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Abstract

Parameter specification usually has significant influence on the performance of land
surface models (LSMs). However, estimating the parameters properly is a challenging
task due to the following reasons: (1) LSMs usually have too many adjustable
parameters (20-100 or even more), leading to the curse of dimensionality in the
parameter input space; (2) LSMs usually have many output variables involving
water/energy/carbon cycles, so that calibrating LSMs is actually a multi-objective
optimization problem; (3) regional LSMs are expensive to run, while conventional
multi-objective optimization methods needs a huge number of model runs (typically
10° ~ 106). It makes parameter optimization computationally prohibitive. An uncertainty
qualification framework was developed to meet the aforementioned challenges: (1)
use parameter screening to reduce the number of adjustable parameters; (2) use
surrogate models to emulate the response of dynamic models to the variation of
adjustable parameters; (3) use an adaptive strategy to promote the efficiency of
surrogate modeling based optimization; (4) use a weighting function to transfer multi-
objective optimization to single objective optimization. In this study, we demonstrate the
uncertainty quantification framework on a single column case study of a land surface
model — Common Land Model (CoLM) and evaluate the effectiveness and efficiency of
the proposed framework. The result indicated that this framework can achieve optimal
parameter set using totally 411 model runs, and worth to be extended to other large
complex dynamic models, such as regional land surface models, atmospheric models
and climate models.

1 Introduction

Land surface models (LSMs), which offer land surface boundary condition for
atmospheric models and climate models, are widely used in weather and climate
forecasting. They are also a tool for studying the impacts of climate change and
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human activities on our environment. Parameters of land surface models usually have
significant influence on their simulation and forecasting capability. It has been shown
that tuning even one or two parameters may significantly enhance the simulation ability
of a land surface model (Henderson-Sellers et al., 1996; Liang et al., 1998; Lohmann
etal., 1998; Wood et al., 1998). How to specify the parameters in a LSM model properly,
however, remains a very challenging task because the LSM parameters are usually not
directly measurable at the scale of model applications.

Automatic optimization approaches have been frequently used in calibrating the
parameters of hydrological models. There is a plethora of optimization approaches
available, including single-objective optimization methods such as SCE-UA (Duan
et al.,, 1992, 1993, 1994), SCEM-UA (Vrugt et al., 2003), genetic algorithm (Wang,
1991), and multi-objective optimization methods such as MOCOM-UA (Boyle et al.,
2000; Boyle, 2000; Gupta et al., 1998; Yapo et al., 1998) and MOSCEM-UA (Vrugt
et al., 2003).

Compared to traditional hydrological models, the parameter calibration approach
has not been practiced as much in LSM community, especially for large spatial scale
applications. The major obstacles to calibrating land surface models over a large
spatial scale are: (1) there are too many parameters to calibrate, (namely, the curse of
dimensionality in parameters); (2) dimensionality of the output space is too high (i.e.,
many processes such as water/energy/carbon cycles are simulated simultaneously);
(8) conventional optimization methods, especially multi-objective approach, need
a large number (~ 10°-1 06) of model runs; and the large complex dynamic system
models such LSMs are usually expensive to run (i.e., costing many CPU hours).
There have been numerous attempts to use multi-objective optimization to calibrate the
parameters of land surface models and significant improvement in LSM performance
measures as a result of optimization have been reported (Bastidas et al., 1999; Gupta
et al., 1999; Leplastrier et al., 2002; Xia et al., 2002). However, the optimization efforts
in the past were usually limited to cases studies involving only point or limited spatial
domain-scale applications of LSMs (Liu et al., 2003, 2004, 2005). To take a multi-
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objective optimization to the calibration of LSM parameters for large scale applications,
the key is to know how to reduce the number of model runs to an appropriate level that
we can afford.

In our recent works, we proposed a framework that can potentially reduce the number
of model runs needed for parameter calibration of large complex system models (Wang
et al., 2014). This framework involves the following steps: (1) a parameter screening
step using global sensitivity analysis to identify only the most sensitive parameters
to be included in the optimization; (2) surrogate modelling that can emulate the
response surface of the dynamic system model to the change in parameter values;
(8) an adaptive sampling strategy to improve the efficiency of the surrogate model
construction; (4) a multi-objective optimization step to optimize the most sensitive
parameters in the dynamic system models. In this paper, we will illustrate this
parametric uncertainty quantification framework on the Common Land Model (CoLM),
a widely used, physically based land surface model developed by Yongjiu Dai and
colleagures (Dai et al., 2003, 2004; Ji and Dai, 2010). The work related to parameter
screening and surrogate modeling based optimization (ASMO) method for single
objective has already been published (Li et al., 2013; Wang et al., 2014). This paper
will emphasize on the analysis of different surrogate model construction methods and
multi-objective optimization method and results.

This paper contains the following parts: Sect. 2 introduces the basic information on
CoLM, the study area and dataset, the adjustable parameters and the output variables
to be analyzed; Sect. 3 presents an inter-comparison of 5 surrogate modeling methods,
and discusses how many model runs will be sufficient to build a surrogate model for
optimization; Sect. 4 carries out single and multiple objective optimization using an
adaptive surrogate model based optimization strategy (ASMO); Sect. 5 provides the
conclusion.
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2 Experiment setup
2.1 Model and parameters

Common Land Model (CoLM) proposed by Yongjiu Dai and colleagues (Dai et al.,
2003, 2004; Ji and Dai, 2010) is one of the most widely used land surface model in
the world. It combines the advantages of Land Surface Model (LSM) (Bonan, 1996),
Biosphere—atmosphere transfer scheme (BATS) (Dickinson et al., 1993) and Institute
of Atmospheric Physics land-surface model (IAP94) (Dai and Zeng, 1997; Dai et al.,
1998). CoLM considers physical processes of energy and water transmission in soil
vegetation, snow cover and atmosphere. It also implements glacier, lake, wetland
and dynamic vegetation processes. Similar to previous research in presented in Li
et al. (2013), we select 40 adjustable parameters from CoLM. The parameter names,
physical meanings and value ranges are shown in Table 1.

This study considers six output variables simulated by CoLM: sensible heat, latent
heat, upward longwave radiation, net radiation, soil temperature and soil moisture. The
Normalized Mean Squared Error is used as the objective function in our analysis:

NRMSE, = (1)
! N
>y
j=1

sim _ obs) 2

where / is the index of output variables, j is the index of time step, N is the total number
of observations, y,s,'/.m and yﬁ';’s are the simulated and observed values, respectively.
Objective functions represent the performance of model simulation and a smaller
objective function means better performance.
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2.2 Study area and datasets

The study area and associated datasets are from the Heihe river basin, the same as
in (Li et al., 2013). The Heihe river basin, which is located between 96°42'-102°00' E
and 37°41'—42°42'N, is an inland river basin in the arid region of northwest China.
The basin area is approximately 130000 km? and its altitude varies from sea level
to 5500 m. The Heihe river basin has a variety of land using types including forest,
grassland, farmland, and glacier, among others, making it an ideal research region for
LSM simulation. In this research we use the data from A’rou observation station located
at the upstream region of the Heihe river basin. Its geographic coordinate is 100°28’ E,
30°08' N, altitude is 3032.8 m above sea level and the land cover type is alpine steppe.
The forcing data used include downward shortwave and longwave radiation,
precipitation, air temperature, relative humidity, air pressure and wind speed (Hu et al.,
2003); and the observation data used to validate the simulation of CoLM include:
sensible heat, latent heat, upward longwave radiation, net radiation, soil temperature
and soil moisture. The soil temperature and moisture were measured at depth 10, 20,
40, and 80cm. In CoLM, the soil is divided into 10 layers and the linearly interpolated
to the measured depth. Currently we have 2 years observation data. The data from
year 2008 was used for spin up and that of 2009 was used for parameter screening,
surrogate modeling and optimization. The simulation time step is set to 30 min and the
simulation outputs are averaged to 3 h in order to compare with the observation data.

3 Comparison of surrogate models

After the sensitive parameters are identified using global sensitivity methods (see Li
et al.,, 2013), the next step is to calibrate the sensitive parameters through multi-
objective optimization. Since the calibration of CoLM in real world applications can
be very expensive, we aim to establish a surrogate model to represent the response
surface of the dynamic CoLM. Surrogate model, also called response surface, meta-

6720

Jaded uoissnosiq

Jaded uoissnasiq | Jadeq uoissnosiq | Jaded uoissnasiq

HESSD
11, 6715-6751, 2014

Multi-objective
optimization of
CoLM’s parameters

W. Gong et al.

' III III


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/6715/2014/hessd-11-6715-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/6715/2014/hessd-11-6715-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

model, statistical emulator, is a statistical model that describes the response of output
variable to the variation of input variables. Because the surrogate model only considers
the statistical relationship between input and output, it is usually much cheaper to run
than the original large complex dynamic model (“original model” for short). Parameter
optimization usually needs thousands, or even millions times of model runs. It will be
impossible to calibrate large complex dynamic models if running the original dynamic
model is too time consuming. If we can do parameter optimization with surrogate
model instead of original model, the time of running original model will be dramatically
reduced, making it possible to calibrate the large complex dynamic models, such as
land surface models, atmospheric models, or even global climate models. However,
optimization based on surrogate models may be a challenging task because the
response surface might be very bumpy and has many local optima. Razavi et al. (2012)
gave a comprehensive review of the surrogate modeling methods and applications in
water resources, and discussed the pitfall of surrogate modeling as well.

In this research, we first compared 5 different surrogate models: multivariate
Adaptive Regression Spline (MARS), Gaussian Process Regression (GPR), Random
Forest (RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN).
A brief introduction of these methods is provided in the Appendix. To build a surrogate,
we need to choose a sampling method first. The sampling method used in this study is
Latin Hypercube Sampling (LH) (Mckay et al., 1979). The sample sizes are set to 50,
100, 200, 400, 800, 1200, and 2000. The inter-comparison results are shown in Fig. 1,
in which the x axis is the sample size, and y axis is the NRMSE (i.e., the ratio of the root
mean square error (RMSE) of the simulation model and the surrogate model). For each
output variable, we only construct surrogate models for the most sensitive parameters
based on the screening results of several global sensitivity methods performed by Li
et al. (2013). The list of sensitive parameters is shown in Table 2.

Figure 1 indicated that: (1) the error of surrogate model decreases as the sample
size increases. The error becomes stable when the sample size is larger than 400.
More samples can reduce the error but the benefit of additional samples is marginal.

6721

Jaded uoissnosiq

Jaded uoissnasiq | Jadeq uoissnosiq | Jaded uoissnasiq

HESSD
11, 6715-6751, 2014

Multi-objective
optimization of
CoLM’s parameters

W. Gong et al.

' III III


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/6715/2014/hessd-11-6715-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/6715/2014/hessd-11-6715-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

(2) Among the 5 different surrogate models, GPR has the best performance, while
ANN ranks the second. RF and MARS have lower accuracy. For some output variables
(e.g., sensible and latent heat), the performance of SVM seems good, while for
other variables (e.g., soil temperature), SVM’s performance is not satisfactory. (3) The
convergence speed for the 6 output variables is different. The elbow points (i.e., the
point at which the objective function value changes from rapid decrease to a gradual
one) of net radiation, soil temperature and soil moisture are significantly at 200 sample
points, while for sensible heat, latent heat and upward long-wave radiation, the elbow
points are not clear. Since among all methods, the GPR method can stably give the
best performance for all the 6 output variables, we choose GPR in the following multi-
objective optimization analysis.

4 Optimization
4.1 Single-objective optimization

Before we conduct multi-objective optimization, we first carried out single-objective
optimization for each output variable using the GPR surrogate model. The Shuffled
Complex Evolution (SCE) method (Duan et al.,, 1992, 1993, 1994) is used to find
the optima of the surrogate model. In order to figure out how many sample points
are sufficient to construct a surrogate model for optimization, different sample sizes
(i.e., 50, 100, 200, 400, 800, 1200, and 2000) are experimented. To evaluate the
optimization results based on the surrogate model, we also set up two control cases:
(1) no optimization using the default parameters as specified in CoLM. (2) Optimization
using the original CoLM (i.e., no surrogate model is used). The second case is referred
as “direct optimization” in the following text. The control cases are used to confirm the
following hypotheses: (1) parameter optimization can indeed enhance the performance
of CoLM. (2) Optimization using the surrogate model can achieve similar optimization
result as using the original model, but with fewer sample points.
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The converged parameters from the single-objective optimization runs are shown
in Fig. 2. In each subfigure the optimal parameter values are normalized to [0, 1].
The bold black line is the optimal parameter set obtained by direct optimization using
the original CoLM, and other lines are optimal parameters given by surrogate models
created with different sample sizes. Table 3 summarizes the optimized NRMSE values
of all surrogate model based optimization runs with different sample sizes, as well as
the control cases. The numbers of original model runs that SCE takes are also listed
in the brackets.

The optimization results reveal that: (1) parameter optimization can significantly
improve the simulation ability of CoLM significantly for all output variables. (2) For
sensible heat, upward longwave radiation, net radiation, soil moisture, the optimal
parameters given by the surrogate model optimization runs are very similar to those
obtained by direct optimization. The optimal parameters obtained for different sample
sizes are also close to each other. For latent heat and soil temperature, however,
the optimal parameters given by surrogate model optimization and direct optimization
are significantly different. The discrepancy between the results with different sample
size is also significant, comparing to the previous 4 outputs. (3) Surprisingly, for
some variables (sensible heat, upward longwave radiation, net radiation, soil moisture),
sample size does not have significant influence on the optimization results. As shown
in Table 3, even a surrogate model constructed with 50 samples is similar to the one
constructed with 2000 samples and with the direct optimization. For soil temperature,
200 samples are sufficient, and for latent heat, more than 400 samples are enough.
The result confirms the findings in Sect. 3 that approximately 200 sample points might
be sufficient to construct a surrogate model for parameter optimization. This finding
is very meaningful because it implies that we can dramatically reduce the number of
model runs required by optimization down to hundreds of times. (4) The number of
original model runs that SCE takes before converge is also listed in Table 3. The result
indicated that SCE can get better, or similar optimal NRMSE, but the cost of original
model runs is larger than using surrogate model. If the original dynamic model costs
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too much CPU time to run, surrogate based optimization can be more efficiency than
SCE. (5) Different output variables require different optimal parameters, indicating the
necessity of multi-objective optimization. For example, P6, the Clapp and Hornberger
“b” parameter, is sensitive to many outputs. For sensible heat, latent heat and soil
moisture, the optimal value for P6 is high, while for upward longwave radiation, net
radiation and soil temperature, the optimal value for P6 is low. In order to balance the
performance measures of all output variables, it is necessary to choose a compromised
value for P6. Multi-objective optimization is an objective approach that can provide
such a compromised optimal parameter that balances the requirements of many output
variables.

4.2 Multi-objective optimization

The results of single-objective optimization from previous section have highlighted the
necessity for multi-objective optimization. Many multi-objective optimization methods
have been proposed and validated in numerous studies (Boyle et al., 2000; Boyle,
2000; Gupta et al., 1998, 1999; Yapo et al., 1998; Vrugt et al., 2003; Bastidas et al.,
1999; Leplastrier et al., 2002; Pollacco et al., 2013; Xia et al., 2002), but in the context
of this research, we need a method that can satisfy the following conditions: (1)
the method should be compatible with surrogate model optimization; (2) for practical
reasons, it should provide a single best parameter set instead of a full Pareto optimum
set with many non-inferior parameter sets. The Pareto set with hundreds, or more
parameter sets have appeals in that it can provide an ensemble of model outputs,
which in turn can be used to assess parametric uncertainty. For large complex dynamic
models such as CoLM, it is generally impractical to run the model in an ensemble mode
with hundreds of model runs. In this study, we use a weighting function method to
convert the multi-objective optimization into a single objective optimization. The weight
assigned to each objective function is based on Liu et al. (2005). The general idea
is that we assign more weight to the objective function of an output, if that output is
simulated more poorly as compared to the other outputs. Table 4 shows the RMSE
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output is proportional to the NRMSE.
After the weights are determined, the weighted objective function is as follows:

n
F = w,RMSE, @)

i=1

in which the RMSE; is the Root Mean Squared Error of each output variable that

N, 2
defined as RMSE, = %\/Z (yf'/m—yf?s) , w; is the weight of each output, and
A\ ,

n
> w;=1.
i=1

In order to use the information offered by surrogate model more effectively, we
developed an adaptive surrogate modeling based optimization method called ASMO
(Wang et al., 2014). The major steps of ASMO are as follows: (1) construct a surrogate
model with initial samples, and find the optimal parameter of the surrogate model. (2)
Run the original model with this optimal parameter and get a new sample. (3) Add the
new sample to the sample set and construct a new surrogate model, and go back to
the 1st step. The effectiveness and efficiency of ASMO have been validated in Wang
et al. (2014) using 6-D Hartman function and a simple hydrologic model SAC-SMA. As
shown in the comparison between ASMO and SCE-UA, ASMO is more efficient that
can get archive convergence with less model runs, while SCE-UA is more effective that
can get closer to the true global optimal parameter. So making a choice between ASMO
and SCE-UA is a “cost-benefit” trade-off: if the model is very cheap to run, SCE-UA is
preferred because it is more effective to find the global optimum; while if the model is
very expensive to run, ASMO is preferred because it can find a fairly good parameter
within a limited time of model runs. Such parameter set might not be the true global
optimum, but it is the “not bad” solution that is cheap enough we can afford.
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We carried out multi-objective optimization with ASMO using weighting function
defined in Eq. (2) and the optimization results are shown in Figs. 3 and 4. To compare,
we also carried out the direct optimization using SCE-UA. Figure 3 presents the
default parameter, the optimal parameter given by ASMO and that given by SCE-
UA. Figure 4 shows the improvements given by ASMO and SCE-UA comparing to
the default parameters. From Fig. 4 we can find that all of outputs are improved nearly
10 % except soil temperature, and the improvements made by ASMO is similar with
SCE-UA. The results indicated that multi-objective optimization can indeed enhance
the performance of CoLM using either ASMO or SCE-UA method. The ASMO method
get converged after 11 iterations, namely, the total number of model runs is 411, while
the number of model runs for SCE-UA is at 1000, which is the maximum model runs
set for SCE-UA. Obviously ASMO is a more efficient method compared to SCE-UA in
this case.

We also used the Taylor diagram (Taylor, 2001) to compare the simulation results
during calibration period and validation period (see Figs. 5 and 6). The optimization
results given by SCE and ASMO are compared against the performance of default
parameterization scheme. Since only 2 years observation data of the 6 output variables
are available, we use the first year (2008) data as the warm-up period, use the second
year (2009) data as calibration period, and then use the previous 2008 year data as the
validation period. The missing records have been removed from the comparison.

As indicated in Fig. 5, the performance of optimized parameter given by both
SCE and ASMO (Case C and D in the Taylor diagram) are better than default
parameterization scheme (Case B) expect soil temperature. Even though, the
correlation coefficients given by all the three cases are higher than 0.9, indicating that
this imperfection will not cause significant inconsistency of the land surface modelling.
In Fig. 6, the performance of validation period is quite similar with that in calibration
period, indicating that the optimal parameters are well identified and the over-fitting
problem is avoided.
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The four energy fluxes (sensible/latent heat, upward long-wave radiation, net
radiation) and soil surface temperature have very good performance. However, the
performance of soil moisture seems not satisfactory. The correlation coefficient of soil
moisture of Case B (default parameter) is less than 0, while with the help of SCE and
ASMO optimization the correlation coefficient is only slightly larger than 0. The possible
reasons might be as follows: (1) the default soil parameters of CoLM is derived from
the soil texture in 17-category FAO-STATSGO soil dataset (Ji and Dai, 2010), which
provide top-layer (30 cm) and bottom-layer (30—100 cm) global soil textures and has
a 30s resolution. The resolution and accuracy of this dataset may be not accurate
enough in A’rou frozen/thaw station. A finer soil database, such as “The Soil Database
of China for Land Surface Modeling” (Shangguan et al., 2013), or an in-situ field survey
for soil texture, should be used to improve the quality of default parameterization
scheme. (2) Simulating frozen/thaw processes is a challenging task in land surface
modeling, and we are still lack of knowledge about the details of the physical processes.
Parameter optimization can improve the model performance if the model physics are
correct, but optimization is helpless if the model structure is inconsistent with the
true physical processes. Although CoLM’s performance of simulating frozen soil and
snow cover has been evaluated in the experiment in Valdai, Russia (Dai et al., 2003),
the situation of Heihe in China is very different. For an instance, in CoLM the soil
depth is set to 2.86 m globally, but actually the soil depth varies in different place.
Fundamentally such a simplification may not introduce significant error to the simulation
of energy flux, but it definitely influence the performance of hydrological processes
such as soil moisture. Otherwise, the altitude of Heihe is much higher than Valdai, and
the influence of human activities is also significantly different. All these reasons can
potentially influence the performance of CoLM and can not be mitigated by parameter
optimization, so we should revise the model physics before parameter optimization.
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5 Conclusions

We have carried out multi-objective parameter optimization for a land surface model,
CoLM, at the Heihe river basin. Although there have been many similar works, such as
multi-objective calibration of hydrological models (Gupta et al., 1998; Vrugt et al., 2003),
land surface models (Gupta et al., 1999), single column land—atmosphere coupled
model (Liu et al., 2005), and SVAT model (Pollacco et al., 2013), the novel contribution
of this research lies in the significant reduction of model runs. In previous research,
a typical multi-objective optimization needs 10° ~ 10° or even more model runs. For
large complex dynamic models which are very expensive to run, it is impractical to
parameter optimization because of lack of computational resources. In this research,
we managed to achieve a multi-objective optimal parameter set with only 411 model
runs. The performance of the optimal parameter set is similar with the one gotten
from SCE method using more than 1000 model runs. Such a result indicates that
the proposed framework in this paper is able to provide optimal parameters with only
hundreds of model runs. Consequently this framework is suitable to be applied to
more large complex dynamic system models, such as regional land surface models,
atmospheric models and even global climate models.

Appendix A: Surrogate modelling approaches

A1 Multivariate Adaptive Regression Splines (MARS)

The Multivariate Adaptive Regression Splines (MARS) model is a kind of flexible
regression model of high dimensional data (Friedman, 1991). It automatically divide
the high-dimensional input space into different partitions with several knots and carry
out linear or nonlinear regression in each partition. It takes the form of an expansion in
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product spline basis functions as follows:

M Kn
y=fx)=ap+ D an[ |1skmupm - teml, (A1)
m=1 k=1

where y is the output variable and x = (x4, X5, ..., X,,) is the n-dimensional input vector;
ay is a constant, a,, are weightings of each basis functions, m is the index of basis
functions and M is the total number of basis functions; in each basis function B,,(x) =

Km
[T [Sk,m Xy, m) = te,m)],» k is the index of knots and K, is the total number of knots;
k=1

Si.m take on value +1 and indicate the right/left sense of associated step function,
v(k, m) is the index of the input variable in vector x, and t, ., indicates the knot location
of the kth knot in the mth basis function.

MARS model is built in two stages: the forward pass and the backward pass.
The forward pass builds an over-fitting model includes all input variables, while the
backward pass removes the insensitive input variables one at a time. According to
statistical learning theory, such a build-prune strategy can extract information from
training data and meanwhile avoid the influence of noise (Hastie et al., 2009). Because
of its pruning and fitting ability, MARS method can be used as parameter screening
method (Gan et al., 2014; Li et al., 2013; Shahsavani et al., 2010), and also surrogate
modeling method (Razavi et al., 2012; Song et al., 2012; Zhan et al., 2013).

A2 Gaussian Processes Regression (GPR)

Gaussian Processes Regression (GPR) (Rasmussen and Williams, 2006) is a new
machine learning method based on statistical learning theory and Bayesian theory. It is
suitable for high-dimensional, small-sample nonlinear regression problems. In function-
space view, a Gaussian process can be completely specified by its mean function and
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covariance function:

m(x) = ETf(x)] (2)
k(x,x') = E[(f(x) = m(x))(f(x") = m(x'))]
where f(x) is the Gaussian process with n-dimensional input vector x = (x4, X»,...,X,),
m(x) is its mean function and k(x,x') is its covariance function between two
input vectors x and x’. For short this Gaussian process can be written as f(x) =
GP(m(x), k(x,x")).
Suppose a nonlinear regression model

y=f(x)+¢ (A3)

where x is the input vector, y is the output variable, and ¢ is the independent identically
distributed Gaussian noise term with zero mean and variance 0,2,. Suppose y is the
training outputs, X is the training input matrix in which each column is an input vector,
f, is the test outputs, X, is the test input matrix, K(X, X), K (X, X,) and K(X,,X,) denote
covariance matrixes of all pairs of training and test inputs. We can easily write the joint
distribution of training and test input and output as a joint Gaussian distribution:

y KX, X)+02l K(XX,)
L7 ] R &%) (Ad)

We can derive the mean and variance of predict output from Bayesian theory. The
predictive equations are presented as follows:

E(f.) = K(X,,X) [K(X,X) + oﬁ/] oy (A5)

cov(f.) = K(X_,X.) - K(X.,X) [K(x, X) + oﬁ/] KX X) (AB)
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In this example, the outputs y is centered to zero so that the mean function is m(x) =
0, while each element of covariance matrixes equals to the covariance function k(x, x')
of input pairs.

The covariance function is the crucial ingredient of Gaussian Processes Regression,
as it encodes the prior knowledge about the input—output relationship. There are
many kinds of covariance functions to choose and users can construct special type
of cov-function depending on their prior knowledge. In this paper, we choose Martérn
covariance function:

2 ([ ovr\' Vovr
k(r) = rw) (T) K, <T> (A7)

where r =|x - x'| is the Euclidian distance between input pair x and x’, K,(.) is
a modified Bessel function, v and / positive hyper parameters, v is the shape factor
and / is the scale factor (or characteristic length). The Martérn covariance function is
an isotopic cov-function that the covariance only depends on the distance between
x and x’. The shape scale v controls the shape of cov-function: larger v lead to
a smoother process while small v lead to a rougher one. If the shape scale v — oo
we obtain squared exponential covariance function k(r) = exp(—r2 /2/2), which is also
called radial basis function (RBF). The Martérn covariance function becomes a product
of a polynomial and an exponential when v is half-integer: v = p+1/2. The most widely
used cases are v =3/2 and v =5/2, as follows:

Kyesyalr) = <1 ' @) exp (—%) (18)
2
kv=3/2(r) = <1 + @ + 2%) exp <—$> (A9)

In this paper, a value of v = 5/2 was used.
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To adaptively determine the values of hyper parameters / and o,,, we use maximum
marginal likelihood method. Because of the properties of Gaussian distribution, the
log-marginal likelihood can be easily obtained as follows:

1 -1 1 n
loglp(y|X)] = —Eyr (K + a,%l) y-3 log |K + 05l | - 5 log2m (A10)

where K = K(X,X). In the training process of GPR, we used SCE-UA optimization
method (Duan et al., 1993) to find the best / and o,,.

A3 Random Forests (RF)

Random Forests (RF) (Breiman, 2001) are a combination of Classification and
Regression Trees (CART) (Breiman et al., 1984). Generally speaking, tree-based
methods split the feature space into a set of rectangles and fit the samples in each
rectangle with a class label (for classification problems) or a constant value (for
regression problems). In this paper only regression tree was discussed. Suppose x =
(x1,X5,...,X,) is the n-dimensional input feature vector and y is the output response,
the regression tree can be expressed as follows:

M
fx)= D cpllxeRy) (A11)
m=1

1, xefR,

o xff (A12)

IxeR,)= {

where M is the total number of rectangles, m is the index of rectangle, R,, is its
corresponding region, ¢, is a constant value equals to the mean value of y in region
R,,. To effectively and efficiently find the best binary partition, a greedy algorithm
is used to determine the feature to split and the location of split point. This greedy
algorithm can be very fast especially for large dataset.
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Because of the major disadvantages of a single tree, such as over-fitting, lack of
smoothness and high variance, many improved methods have been proposed, such
as MARS and random forests. Random forests construct many trees using randomly
selected outputs and features, and synthetic the output of all the trees to give the
prediction result. Random forests only have two parameters: the total number of trees
t, and the selected feature number . Constructing random forests needs following
steps:

1. Bootstrap aggregating (Bagging): from total N samples (x,,y;),i =1,2,...,N,
randomly select one point at one time with replacement, and replicate N times to
get a resample set containing N points. This set is called a bootstrap replication.
We need t bootstrap replications for each tree.

2. Tree construction: for each splitting of each tree, randomly select m features from
the total M, and select the best fitting feature among the i to split. The i selected
features should be replaced in every splitting step.

3. The prediction result of random forests is given by averaging the output of ¢ trees.

fu(x) = D f(x) (A13)

J=1

Random forests have outstanding performance in very high dimensional problems,
such as medical diagnosis and document retrieval. Such problems usually have
hundreds or thousands of input variables (features), with each one only provides a little
information. A single classification or regression model usually has very poor skill that
only slightly better than random prediction. However, by combining many trees trained
using random features, a random forest can give improved accuracy. For big-data
problems that have more than 100 input features and more than one million training
samples, random forests become the only choice because of its outstanding efficiency
and effectiveness.
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A4 Support Vector Machine (SVM)

Support Vector Machine (SVM) is an appealing machine learning method for
classification and regression problems depending on the statistical learning theory
(Vapnik, 1998, 2002). The SVM method can avoid over-fitting problem because it
employs the structural risk minimization principle. It is also efficient for big-data because
of its scarcity. A brief introduction to support vector regression is presented below.

The aim of SVM is to find a function f(x) that can fit the output y with minimum risk
given a N point training set (x;,y;),/ = 1,2,...,N. Take a simple linear regression model
for example, the function f(x) can be:

fX)=w'x+b (A14)

where w is the weighting vector and x is the n-dimensional input feature vector. This
function is actually determined by a small subset of training samples called support
vectors (SVs).

Nonlinear problems can be transferred to linear problems by applying a nonlinear
mapping from low-dimensional input space to some high-dimensional feature space:

fX)=w'px)+b (A15)

where ¢(x) is the mapping function. The inner product of mapping function is called
Kernel Function: K (x,x’) = d)(x)T(;b(x’) and this method is called Kernel method. The
commonly used kernel functions are: linear kernel function, polynomial, sigmoid and
radial basis function (RBF). In this paper we use RBF kernel:

K(x,x') = exp(-y|x — x'?) (A16)

where |x — x'| is the Euclidian distance between x and x’, y is a user defined parameter
that controls the smoothness of 7(x).
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To qualify the “risk” of function 7(x), a loss function is defined as follows:
0, if ly-f(x)<e
ly - f(x)|—&, otherwise

The loss function means regression errors less than tolerance ¢ are not penalized.
The penalty-free zone is also called e¢-tube or e-boundary. As explained in statistical
learning theory (Vapnik, 1998), the innovative loss function is the key point that SVM
can balance empirical risk (risk of large error in the training set) and structure risk (risk
of an over-complex model, or over-fitting). The problem of simultaneously minimizing
both empirical risk (represented by regression error) and structure risk (represented by
the width of ¢-tube) can be written as a quadratic optimization problem:

. 1 n .
Mg W W+C D &+C 2 ¢ (A18)
subjectto w'g(x;)+b-y, <e+¢;

Vi-wlp(x)-b<se+&
§i1§7 20,i= 1,2,...,/7

The problem can be transferred to the dual problem:

H 1 * * n * n *
ming e 5@ -V K@-ay+ey  (q+a)+ 3 yila;-a) (A19)
subjectto e'(@-a*)=0
Yi-wTp(x)-b< e+
050,-,0?50,/’:1,2,...,n

where Kis the kernel function matrix with K;; = K'(x;, x ;). Solving the dual problem and
we can get the predictive function:

Hﬂ:ZLJmWﬁDM@n+b (A20)
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where the vectors (a" — a) are the support vectors (SVs).
A5 Artificial Neural Network (ANN)

Artificial Neural Network (ANN) (REF) is time-hornored marchine learning method
comparing to the former four. It is a data-driven process that can solve complex
nonlinear relationships between input and outpur data. A nerual network is constructed
by many interconnected neurons. Each neuron can be mathematically described as

a linear weighing function and a nonlinear activation function:

/,'= ZW//X/ (A21)
Jj=1

f.(l) = 1 (A22)

T 1 1 exp(-1))

where Xx; is the jth input variable, w;; is the weight and /; is the weighted sum of the /th
neuron. The output of the /th neuron £;(/) is given by the nonlinear activation function
of the weighted sum input. Here we use Sigmoid function.

Minsky and Papert (1969) shows that single layer neural network can only solve
linear problem. Cybenko (1989) extended ANN to multiple layer and demostrated
that multi-layer ANN can infinitely approximate any nonlinear function (the universal
approximation theorem). The training procedure of ANN is optimizing the value of
weights. There are many training methods for ANN and we use the Levenberg—
Marquardt (LM) (Marquardt, 1963) algorithm, a modification of the classic Newton
algorithm provided in matlab ANN toolbox.
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Table 1. Adjustable parameters and their categories, meanings and ranges.

Num Para Units Category  Physical meaning Feasible range
P1 dewmx canopy maximum dew ponding of leaf area [0.05, 0.15]
P2 hksati mms™' soil maximum hydraulic conductivity [0.001, 1]

P3 porsl| - soil porosity [0.25, 0.75]
P4 phi0o mm soil minimum soil suction [50, 500]

P5 wtfact soil fraction of shallow groundwater area [0.15, 0.45]
P6 bsw - soil Clapp and Hornberger “b” parameter [2.5,7.5]

P7 wimp soil water impermeabile if porosity less than wimp [0.01, 0.1]

P8 zInd m soil roughness length for soil surface [0.005, 0.015]
P9 pondmx mm soil maximum ponding depth for soil surface [5, 15]

P10  csoilc - soil drag coefficient for soil under canopy [0.002, 0.006]
P11 zsno m snow roughness length for snow [0.0012, 0.0036]
P12  capr soil tuning factor of soil surface temperature [0.17, 0.51]
P13  cnfac canopy Crank Nicholson factor [0.25, 0.5]
P14 slti canopy slope of low temperature inhibition function [0.1,0.3]

P15  hiti canopy 1/2 point of low temperature inhibition function [278, 288]
P16  shti canopy slope of high temperature inhibition function [0.15, 0.45]
P17  sqrtdi m=%° canopy the inverse of square root of leaf dimension [2.5, 7.5]

P18  effcon mol CO? mol™’ quanta canopy quantum efficiency of vegetation photosynthesis [0.035, 0.35]
P19  vmax25 molCO?’m™2s™" canopy  maximum carboxylation rate at 25°C [1078, 2007°]
P20  hhti canopy 1/2 point of high temperature inhibition function [305, 315]
P21 trda canopy temperature coefficient of conductance-photosynthesis model [0.65,1.95]
P22  trdm canopy temperature coefficient of conductance-photosynthesis model [300, 350]
P23  trop canopy temperature coefficient of conductance-photosynthesis model  [250, 300]
P24  gradm canopy slope of conductance-photosynthesis model [4, 9]

P25  binter canopy intercept of conductance-photosynthesis model [0.01, 0.04]
P26  extkn canopy coefficient of leaf nitrogen allocation [0.5,0.75]
P27  chil canopy leaf angle distribution factor [-0.3, 0.1]
P28  ref(1,1) canopy VIS reflectance of living leaf [0.07, 0.105]
P29  ref(1,2) canopy VIS reflectance of dead leaf [0.16, 0.36]
P30 ref(2,1) canopy NIR reflectance of living leaf [0.35, 0.58]
P31 ref(2,2) canopy NIR reflectance of dead leaf [0.39, 0.58]
P32  tran(1,1) canopy VIS transmittance of living leaf [0.04, 0.08]
P33 tran(1,2) canopy VIS transmittance of dead leaf [0.1,0.3]

P34  tran(2,1) canopy NIR transmittance of living leaf [0.1,0.3]

P35 tran(2,2) canopy NIR transmittance of dead leaf [0.3, 0.5]

P36 zOm m canopy aerodynamic roughness length [0.05, 0.3]
P37  ssi snow irreducible water saturation of snow [0.03, 0.04]
P38 smpmax mm soil wilting point potential [-2.e5, —1.e5]
P39 smpmin mm soil restriction for min of soil potential [-1.e8, -9.e7]
P40  trsmx0 mms™ canopy maximum transpiration for vegetation [1.e-4,1.e-2]
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Table 2. Screened parameters of CoLM in A’rou Station (Li et.al., 2013).

Output variables (fluxes)

Screened parameters

Sensible Heat

Latent Heat

Upward Longwave Radiation
Net radiation

Soil Temperature

Soil Moisture

P2, P4, P6, P30, P34, P36

P2, P3, P4, P6, P18, P30, P36, P38
P6, P17, P36

P6, P17, P30, P34, P36

P3, P6, P36

P3, P6
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Table 3. The NRMSE between simulated and observed outputs after single objective

optimization.
Sensible Latent Upward Net Soil Soil
heat heat longwave radiation temperature moisture
radiation
Default 0.8586 0.5833 0.059 0.2357 0.0096 0.4527
SCE 0.745 0.4921 0.038 0.1963 0.0073 0.3900
Optimized (1492) (1354) (458) (982) (473) (210)
LH50 0.7672 0.5255 0.0377 0.1913 0.008 0.4222
LH100 0.7841 0.5785 0.0372 0.1908 0.0077 0.413
LH200 0.7821 0.5885 0.0374 0.1928 0.0069 0.3947
LH400 0.7798 0.5627 0.0374 0.1928 0.007 0.3971
LH800 0.7683 0.5024 0.0377 0.1909 0.0068 0.3956
LH1200 0.7760 0.5150 0.0374 0.1919 0.0068 0.3962
LH2000 0.7705 0.5048 0.0375 0.1912 0.0070 0.3946
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Table 4. Weights assigned to each output variables.

Flux name Label  Unit RMSE NRMSE Weights
Sensible heat fsena Wm™? 4914 0.8586 0.3905
Latent heat lfevpa W m2 4359 0.5833 0.2653
Upward longwave radiation orlg Wm™? 1943 0.0590 0.0268
Net radiation sabvg Wm™2 4278 02357 0.1072
Soil temperature tss K 2.66 0.0096 0.0044
Soil moisture wliq kg m2 2114 04527 0.2059
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Figure 1. Inter-comparison of 5 surrogate modelling methods.
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Figure 2. Single-objective optimization result: optimal parameters.
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Figure 3. Optimal value of CoLM given by multi-objective optimization (comparing default

parameter, optimal parameter given by ASMO and SCE-UA).
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Figure 5. Taylor diagram of simulated fluxes during calibration period (1

31 December 2009).
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Figure 6. Taylor diagram of simulated fluxes during validation period (here we use warm-up

Standard deviation (kg/m?)

period as validation period, 1 January 2008 to 31 December 2008).
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